ANOVA for within-subject in R - non-parametric
Often errors type variables don’t satisfy the assumption of normality for ANOVA.
Same holds for Likert-scale type variables (ordinal).
1library(plyr)
2ddply(srchscrl, ~ Technique, function(data) summary(data$Errors))
3ddply(srchscrl, ~ Technique, summarise, Errors.mean=mean(Errors), Errors.sd=sd(Errors))
4
5hist(srchscrl[srchscrl$Technique == "Search",]$Errors) # histogram
6hist(srchscrl[srchscrl$Technique == "Scroll",]$Errors) # histogram
7plot(Errors ~ Technique, data=srchscrl) # boxplot
8
9
10library(fitdistrplus)
11fit = fitdist(srchscrl[srchscrl$Technique == "Search",]$Errors, "pois", discrete=TRUE)
12gofstat(fit) # goodness-of-fit test
13fit = fitdist(srchscrl[srchscrl$Technique == "Scroll",]$Errors, "pois", discrete=TRUE)
14gofstat(fit) # goodness-of-fit test
15
16library(coin)
17wilcoxsign_test(Errors ~ Technique | Subject, data=srchscrl, distribution="exact")
18
19library(plyr)
20ddply(srchscrl, ~ Technique, function(data) summary(data$Effort))
21ddply(srchscrl, ~ Technique, summarise, Effort.mean=mean(Effort), Effort.sd=sd(Effort))
22hist(srchscrl[srchscrl$Technique == "Search",]$Effort, breaks=c(1:7), xlim=c(1,7)) # histogram
23hist(srchscrl[srchscrl$Technique == "Scroll",]$Effort, breaks=c(1:7), xlim=c(1,7)) # histogram
24plot(Effort ~ Technique, data=srchscrl, ylim=c(1,7)) # boxplot
25
26library(coin)
27wilcoxsign_test(Effort ~ Technique | Subject, data=srchscrl, distribution="exact")
References
#repeated_measures #within_subjects #week6 #statistics #non_parametric #wilcoxon_signed_rank #designing_running_and_analyzing_experiments #test #coursera #experiment #theory #normality #design #anova #rlang